
Bachelor thesis

Differentiable Cartesian Genetic

Programming as a Service

Mike Heddes

Amsterdam

June 21, 2019

Differentiable Cartesian Genetic

Programming as a Service

Mike Heddes, 500735300

Amsterdam

June 21, 2019

European Space Agency

Advanced Concepts Team

Noordwijk, The Netherlands

Dr. Marcus Märtens

Amsterdam University of Applied Sciences

Engineering, Design and Innovation

Amsterdam, The Netherlands

Drs. Daria Meijers

Mike Heddes

Preface

In early 2015 I decided that I want a website on which I could exhibit my self produced music. The

journey of making my own website started with Wordpress which offers some customization of their

templates but I found myself reaching the limits its customization options quite early on. I was/am too

stubborn to settle with the limitations that Wordpress has and started looking for a different solution. I

started to think about how companies like Facebook make their website and I found out about Facebook’s

React JavaScript library. I read into React and JavaScript in general and became confident that this

would be the way to tailor my own website to my taste.

Two years later when I got close to finishing my website1 developed using React, I started wondering

whether it would be possible to get a web programming (a.k.a. frontend developer) job with my acquired

skill set. To my surprise I got a job interview at Zamro2 which was the first time I could talk about my

website with a professional. The senior developer that was doing my interview was impressed by what

he saw and offered me a position. During my time at Zamro I learned a lot about writing good code

and developing in teams. After three months in the company I got assigned the roll of maintainer of an

internal project which meant that I needed to lead all the frontend teams to collaborate on one project.

All of this was happening in parallel to studying Engineering, Design and Innovation (a.k.a. Mechanical

Engineering) at the Amsterdam University of Applied Sciences.

I applied to the European Space Agency (ESA) for my graduation internship and got a response from

Marcus, a research fellow in the Advanced Concepts Team (ACT), saying that he would like to interview

me because of my interesting skill set. The internship assignment revolved around creating an easy

to use application that provides value for engineers and scientists by producing the equation mapping

between inputs and outputs. My knowledge of engineering, which I accumulated during my study, and

my knowledge of coding proved to be a necessity to create this application.

I want to thank Marcus Märtens and Dario Izzo from the ACT for helping me during the internship. The

ACT has been an experience unlike anything I had done before, I learned a lot from interacting with the

team members and by simply being around them. I really enjoyed my time in the ACT and am excited

for what the future will hold.

Mike Heddes, June 2019

1My personal website: https://mikeheddes.nl.
2Zamro webstore: https://zamro.nl.

ii

https://mikeheddes.nl
https://zamro.nl

Mike Heddes

Summary

Standard machine learning approaches like neural networks can take data and perform regression to

extrapolate and interpolate behavior, the neural network itself is difficult to understand which makes it

difficult to trust. Scientists in the Advanced Concepts Team (ACT) have developed a machine learning

framework called differentiable Cartesian Genetic Programming (dCGP) (Izzo, Biscani, & Mereta, 2016),

which provides explicit equations that can be much easier understood and studied by scientists and

engineers. dCGP thus provides a form of explainable artificial intelligence, which can be applied to any

supervised learning task.

dCGP was only available as a C++ or Python code library. This may prevent projects from using dCGP

that could benefit from it because not every engineer has the prerequisite knowledge on C++ or Python.

The goal of this project is to make it more convenient to use dCGP and to make tools that provide

insight in the evolution and the resulting expression and equations. These two goals are grouped under

the phrase “providing dCGP as a service”. The main question to answer with this project is: how can

one best provide dCGP as a service?

A mix of field, experimental and desk research has been done during this project. The field research

comprises of interviews with clients, my supervisor and potential users. The desk research comprises

of reading the documentation of relevant technologies and tools and reading papers on relevant topics.

Dr. Märtens provided two documents related to dCGP and gave an introductory lecture about dCGP. In

addition, experimental research was done to get a better understanding of how dCGP works and what it

can do which also helped with getting a users perspective of the dCGP library.

First the problems with dCGP were concluded which are its unknown reliability, lack of insight and

a high level of difficulty. Possible technologies and approaches to making the service were researched

and laid out in a choice graph. The best choice was selected using weighted selection criteria in and

selection matrix. The best approach was determined to be a client-side application which uses the React

JavaScript library to make the UI and uses the to WebAssembly compiled C++ dCGP library to interact

with dCGP on the client.

The service was developed using an iterative design method which helped reduce time spend on unimpor-

tant features and provided a tangible prototype early on in the development process. The implementation

of the service is tested with automated unit tests that run before every change to the source code to make

sure the code will still meet the requirements. The service is validated by the members of the ACT who

would experiment and find bug after every incremental release.

Using dCGP is now effortless for every engineer, simply by navigating to the website of the service,

uploading data and evolving. This opens up the possibilities for many projects to use dCGP to do

analysis on data. Genetic programming scientists can now use the service to quickly test their cases and

to get an intuition of how an evolution behaves over time.

To provide users with a better intuition on how the graph structure of dCGP works a view of the graph

can be added to the application. The graph view can show which kernels are used and which nodes are

connected. Each node could show its value so it is easier to reason about how the output is formed based

on the intermediate values. In addition to the ES− (µ+λ) and gradient descent algorithms an algorithm

combining both can achieve potentially better results in a shorter time. The hybrid algorithm should

perform gradient descent before validating the mutated chromosomes.

iii

Mike Heddes

Samenvatting

Standaard machine learning technieken, zoals neurale netwerken, kunnen gegevens opnemen en regressie

uitvoeren om gedrag te extrapoleren en interpoleren, het neurale netwerk zelf is moeilijk te begrijpen

waardoor het moeilijk te vertrouwen is. Wetenschappers in het Advanced Concepts Team (ACT) hebben

een machine learning framework ontwikkeld, genaamd differentiable Cartesian Genetic Programming

(dCGP) (Izzo et al., 2016), dat expliciete vergelijkingen biedt die veel gemakkelijker te begrijpen en

te bestuderen zijn door wetenschappers en ingenieurs. dCGP biedt dus een vorm van verklaarbare

kunstmatige intelligentie, die kan worden toegepast op elke supervised learning opdracht.

dCGP was alleen beschikbaar als een C++ of Python codebibliotheek. Dit kan voorkomen dat projecten

dCGP gebruiken die er baat bij kunnen hebben, omdat niet elke ingenieur over de vereiste kennis van

C++ of Python beschikt. Het doel van dit project is om het toegankelijker te maken om dCGP te

gebruiken en om hulpmiddelen te maken die inzicht bieden in de evolutie en de resulterende expressie

en vergelijkingen. Deze twee doelen zijn gegroepeerd onder de term “dCGP als een service aanbieden.”

De belangrijkste vraag om met dit project te beantwoorden is: hoe kan dCGP het beste als een service

geboden worden?

Tijdens dit project is een mix van field-, experimental- en deskresearch gedaan. Het fieldresearch bestaat

uit interviews met klanten, mijn leidinggevende en potentiële gebruikers. Het deskresearch bestaat uit

het lezen van documentatie van relevante technologieën en hulpmiddelen en het lezen van artikelen over

relevante onderwerpen. Dr. Märtens gaf twee documenten met betrekking tot dCGP en gaf een inleidende

lezing over dCGP. Daarnaast is experimenteel onderzoek gedaan om een beter beeld te krijgen van hoe

dCGP werkt en wat het kan doen, wat ook hielp bij het verkrijgen van een gebruikersperspectief van de

dCGP-bibliotheek.

Eerst werden de problemen met dCGP geconcludeerd, dit zijn de onbekende betrouwbaarheid, gebrek

aan inzicht en een hoge moeilijkheidsgraad. Mogelijke technologieën en uitvoering voor het maken van de

service zijn onderzocht en weergegeven in een keuzegrafiek. De beste keuze werd geselecteerd met behulp

van gewogen selectiecriteria in en selectiematrix. De beste uitvoering was een client-side applicatie die de

React JavaScript-bibliotheek gebruikt om de UI te maken en de met WebAssembly gecompileerde C++

dCGP-bibliotheek gebruikt om te communiceren met dCGP op de client.

De service is ontwikkeld met behulp van een iteratieve ontwerpmethode welke heeft geholpen om weinig

tijd aan onbelangrijke functies te besteden. Volgens de ontwerpmethode is er vroeg in het proces een

prototype gemaakt. De implementatie van de service is getest met geautomatiseerde unittests die vóór

elke wijziging van de broncode worden uitgevoerd om te controleren of de code nog steeds aan de eisen

voldoet. De service wordt gevalideerd door de leden van het ACT die na elke incrementele uitgave

experimenteren en fouten zochten.

Het gebruik van dCGP is nu moeiteloos voor elke technicus, simpelweg door naar de website van de

service te gaan, gegevens te uploaden en te evolueren. Dit opent de mogelijkheden voor veel projecten

om dCGP te gebruiken voor analyse van gegevens. Genetische programmeerwetenschappers kunnen nu

de service gebruiken om het voor hun toepassingen snel te testen en een intüıtie te krijgen van hoe een

evolutie zich in de loop van de tijd gedraagt.

Om gebruikers een betere intüıtie te bieden over hoe de grafische structuur van dCGP werkt, kan een

weergave van de grafiek aan de service worden toegevoegd. De grafiekweergave kan laten zien welke

kernels worden gebruikt en welke knooppunten zijn verbonden. Elk knooppunt zou de waarde ervan

kunnen tonen, zodat het gemakkelijker is om te redeneren over hoe de uitvoer wordt gevormd op basis

van de tussenliggende waarden. In aanvulling op de ES − (µ+ λ) en gradiëntdaling algoritmen kan een

algoritme dat beide combineert potentieel betere resultaten bereiken in een kortere tijd. Het hybride

algoritme zou gradiëntdaling moeten uitvoeren voordat de gemuteerde chromosomen worden gevalideerd.

iv

Mike Heddes

Table of Contents

Preface ii

Summary iii

Samenvatting iv

Terminology viii

1 Introduction 1

2 Problem analysis 2

2.1 Problems . 2

2.2 Orientation resources . 2

2.3 Research questions . 2

2.4 Relevance . 3

2.5 Stakeholders . 3

2.6 Scope . 4

2.7 Client feature requests . 4

3 Solution analysis 5

3.1 Starting point . 5

3.2 Differentiable Cartesian Genetic Programming . 5

3.3 Target audience . 6

3.4 Controls and functionality . 6

3.5 Application development options . 7

3.6 Serving a web application . 7

3.7 dCGP on the server . 8

3.8 dCGP on the client . 8

3.9 Markup generation . 9

3.10 Application inputs and outputs . 10

3.11 Requirements . 10

4 Technology selection 12

4.1 Application approach . 12

4.2 Frontend framework . 12

v

Mike Heddes

5 Detailing 14

5.1 Tools . 14

5.2 Iterative design . 14

5.3 Cases . 15

5.4 GitHub repositories . 16

5.5 Tests and validation . 16

5.6 Documentation . 17

6 Realizing 18

6.1 Distribution . 18

6.2 Marketing . 18

6.3 Maintenance . 18

7 Conclusion 19

8 Recommendations 19

References 20

Appendices 21

A Differential Cartesian Genetic Programming 22

A.1 What dCGP does . 22

A.2 How dCGP works . 22

A.3 What dCGP can be used for . 22

B UI design 24

C WebAssembly bindings 27

C.1 Dependency compilation . 27

C.2 Provided API . 27

C.3 Memory management . 28

D Web Worker system 29

D.1 Proxy . 29

D.2 Observables . 29

D.3 Consistent framerate . 30

E Bugs 31

E.1 Protected division . 31

E.2 Evolution loop . 31

vi

Mike Heddes

F Software development platform interest 32

G Unit tests 33

H Service validation 34

I Interviews 37

I.1 Introduction to dCGP as a service . 37

I.2 dCGP service, users and functionality . 37

I.3 dCGP web service feedback . 37

List of Figures
3.1 dCGP service function diagram . 6

3.2 Possible combinations to make the service . 7

4.1 The combination that best fitted the project’s selection criteria. 13

5.1 dCGP service final UI design. 15

5.2 dcgp.js expression documentation page. 17

A.1 Image encoding comparison . 23

B.1 dCGP service UI design iteration one. 24

B.2 dCGP service UI design iteration two. 25

B.3 dCGP service UI design iteration three. 26

F.1 Software development platform interest . 32

H.1 dCGP service validation without the cosine and sine kernels. 34

H.2 dCGP service validation with the cosine and sine kernels. 35

H.3 dCGP service validation without the sine kernel and with a constant. 36

List of Tables
0.1 Acronyms, abbreviations and terms overview . viii

2.1 Research questions and type. 3

2.2 Client feature requests. 4

3.1 Service requirements . 11

3.2 Selection criteria weights. 11

4.1 Comparison of web application approaches . 12

4.2 Comparison of frontend frameworks. 13

vii

Mike Heddes

Terminology

Table 0.1: Overview of the acronyms, abbreviations and terms used in this document.

Term Full name or description

ACT Advanced Concepts Team

ANN Artificial Neural Network

API Application Programming Interface

Arity The number of arguments that the kernel takes

AuDi Automated Differentiation

C++ General-purpose low-level programming language

CGP Cartesian Genetic Programming

CI Continuous Integration

Client Client of the project or the computer of the user that is visiting the service.

CRA Create React App

CSS Cascading Style Sheets

dCGP differentiable Cartesian Genetic Programming

DOM Document Object Model

Ephemeral constants Constants that are guessed by the user in the hope that the chromosome will

evolve the constant to get the correct value.

ESA European Space Agency

GP Genetic Programming

Gdual Generalized dual number

HTML Hypertext Markup Language

JS JavaScript

Python Interpreted, high-level, general-purpose programming language

PWA Progressive Web App

Supervised learning Task of learning a function that maps an input to an output based on example

input-output pairs.

UI User Interface

viii

1 INTRODUCTION Mike Heddes

1 Introduction

Enabling access to space is one of the goals3 of the European Space Agency (ESA) and requires a lot of

engineering effort and tests. Each satellite is examined by simulating the extreme conditions that appear

during launch and within orbit. The data collected during tests help to understand how materials will

react to extreme conditions, how energy or heat gets dissipated, how much thrust is needed to align a

satellite and much more. While standard machine learning approaches like neural networks can take

this data and perform regression to extrapolate and interpolate the behavior, the neural network itself is

difficult to understand which makes it difficult to trust. Scientists in the Advanced Concepts Team (ACT)

have developed a machine learning framework called differentiable Cartesian Genetic Programming4

(dCGP) (Izzo et al., 2016), which provides explicit equations that can be much easier understood and

studied by scientists and engineers. dCGP thus provides a form of explainable artificial intelligence,

which can be applied to any supervised learning task.

The goal of this six-month project is to make it more convenient to use dCGP and to make tools that

provide insight in the evolution5 and the resulting expression and equations. These two goals are grouped

under the phrase “providing dCGP as a service”. The underlying idea is that dCGP will move one step

further from an academic experiment towards a product (software tool) helpful for engineering.

The main question to answer during this project is: how can one best provide dCGP as a service?

To answer the main question the following sub questions need to be answered:

1. What does dCGP do?

2. How does dCGP work?

3. What can dCGP be used for?

4. Who are interested in dCGP as a service?

5. Which controls should be available on the service?

6. How can the service integrate the dCGP framework?

7. Which technologies can be used to make the service?

8. What requirements must the service meet?

To answer the previously stated sub questions a mix of field, experimental and desk research is used.

The field research comprises of interviews with clients, my supervisor and potential users. Feedback on

the service by early adopters is also seen as field research. Experimental research is done to get a better

understanding of how dCGP works and what it can do. The desk research comprises of reading the

documentation of relevant technologies and tools and reading papers on relevant topics such as genetic

programming and the dCGP paper.

The remaining part of this thesis covers the problem analysis in chapter 2 which describes what the

problem is, who the stakeholders are and which features the clients want the service to have. Chapter 3

states the research that has been conducted about dCGP, the target audience and the technologies that

can be used to make the service. Chapter 4 describes and substantiates the choices that were made on

the implementation of the service. Chapter 5 describes the development process of making the service.

Chapter 6 describes the distribution, marketing and maintenance of the service. Chapter 7 states the

conclusion of the thesis. Chapter 8 provides recommendations to improve the service. Appendix A

describes how the dCGP framework works and what it can be used for. Appendix B contains the UI

design iterations. Appendix C covers an implementation case about compiling the dCGP framework to

WebAssembly. Lastly, appendix D covers an implementation case about the use of Web Workers in the

service.

3What is ESA web page: https://www.esa.int/About Us/Welcome to ESA/What is ESA.
4dCGP is a subset of Genetic Programming (GP) which is a field of computer science that uses biology metaphors to

frame optimization tasks.
5In GP evolution is an iterative training process that can change the encoded expression to optimise for a given

evaluation. This is similar to evolution in biology where evolution can change the DNA of a population to optimise for

survival.

1

https://www.esa.int/About_Us/Welcome_to_ESA/What_is_ESA

2 PROBLEM ANALYSIS Mike Heddes

2 Problem analysis

This chapter describes three problems that are present in the state of dCGP prior to this project. In

addition the relevance, stakeholders and boundary conditions of the project followed by the goals of the

client are stated.

2.1 Problems

In an interview with Dr. Märtens (Heddes, 2019c) two problems surfaced from the ACT’s perspective.

The first problem results from the high standards ESA sets for their tools. Within ESA all tools used for

mission critical applications need to be reliable and precise because small errors during the development of

a mission can have major implications for the success of the mission. dCGP is a relatively new framework

with few people actively testing it therefore the reliability has not been proven and thus can dCGP not

be used for mission critical applications yet.

The encoding of the expression used in Cartesian Genetic Programming (CGP) is made to be computer

memory efficient and easy to manipulate by evolution algorithms. The encoding was not made to be

readable for humans. Inspecting the expression is therefore a confusing and time-consuming task. There

are, as of writing this thesis, no tools available that can provide scientists a way of easily inspecting what

is encoded in the expression.

dCGP has a steep learning curve because it tries to solve an inherently difficult problem and it requires

prerequisite knowledge about programming in C++ or Python6 which not every engineer will have. The

steep learning curve may prevent projects from using dCGP that could benefit from the functionalities

that dCGP offers.

In summary, the three problems dCGP had are unknown reliability, lack of insight and a high level of

difficulty. This project mainly focused on the third problem and added features that will help resolve

problem two as well.

2.2 Orientation resources

In the first week of the project Dr. Märtens provided two documents related to dCGP. The first docu-

ment, Differentiable Genetic Programming (Izzo et al., 2016), is the original paper introducing dCGP.

The second document, called Evolving Artificial Neural Networks using Cartesian Genetic Programming

(Turner, 2015), is a PhD thesis describing many aspects of CGP and its relation to ANN’s. Along with

the documents Dr. Märtens gave an introductory lecture about dCGP. In addition, experimental research

was conducted to get a better understanding of how dCGP works and what it can do. This meant coming

up with a superficial example to use dCGP on. Doing the experimentation provided a users perspec-

tive of the dCGP library. Lastly, the original paper introducing CGP, simply called Cartesian Genetic

Programming (Miller & Thomson, 2000), was used to understand how the underlying CGP works. The

result of the experimentation together with a comprehensive explanation of dCGP is stated in appendix

A.

2.3 Research questions

The goal of this project was to make it more convenient to use dCGP and to make tools that provide

insight in the evolution and the resulting expression and equations. These two goals were grouped under

the phrase “providing dCGP as a service”. The underlying idea was to move dCGP one step further from

an academic experiment towards a product (software tool) helpful for engineering.

The main question to answer during this project was: how can one best provide dCGP as a service?

In order to answer the main question the sub questions stated in table 2.1 needed to be answered. The

next list substantiates the decisions of the specified research types in table 2.1.

1. By reading papers on dCGP and GP an insight into what dCGP does was formed.

6The dCGP framework is only available as a C++ or Python library.

2

2 PROBLEM ANALYSIS Mike Heddes

2. By reading papers on dCGP and GP and by doing an experiment, an insight into how dCGP works

was formed.

3. By reading papers on dCGP and GP and by having conversations with machine learning scientists

an insight into what dCGP can be used for was formed.

4. By doing an interview with Dr. Märtens an insight into their target audience was formed.

5. By doing an interview with Dr. Märtens and discussions with Dr. Izzo an insight into which controls

the service should have was formed.

6. By reading into established and new ways to integrate software in a web application an insight into

the possible technologies to integrate the dCGP framework was formed.

7. By searching for and reading into promising technologies (Green & Seshadri, 2013) and by watching

conference talks by web industry experts (Occhino & Walke, 2013; You, 2017) an insight into which

technologies can be used to make the service was formed.

8. By doing an interview with Dr. Märtens and reading papers on dCGP the requirements of the

service were determined.

Three interviews that were conducted during this internship are described in appendix I.

Table 2.1: Research questions and type.

Research question Research type

1. What does dCGP do? Desk

2. How does dCGP work? Desk and experiment

3. What can dCGP be used for? Desk and field

4. Who are interested in dCGP as a service? Field

5. Which controls should be available on the service? Field

6. How can the service integrate the dCGP framework? Desk

7. Which technologies can be used to make the service? Desk

8. What requirements must the service meet? Desk and field

2.4 Relevance

Making dCGP more approachable and easier to use opens up the possibilities for various industries to

use dCGP to find mathematical relations between data. In the mechanical industry dCGP can be used

to find relations between any numerical data to optimise existing products or to find new opportunities

to explore which can catalyze the development of new technologies.

Each satellite at ESA is examined by simulating the extreme conditions that appear during launch and

within orbit. The data collected during tests help to understand how materials will react to extreme

conditions, how energy or heat gets dissipated, how much thrust is needed to align a satellite and much

more. Making dCGP more approachable means that it can be used more frequently to understand the

data that is collected during tests.

dCGP is also used in the industry by the DowDuPont company. DowDuPont manufactures, among other

things, plastics and chemicals. The research and development department of DowDuPont uses dCGP to

find the relation between material properties of their polymers. Testing exotic polymers is very expensive

which makes it essential to be able to extract the relation from as few measurements as possible. By

finding the relation between material properties DowDuPont can manufacture polymers optimized for a

specific task.

2.5 Stakeholders

The following list specifies the stakeholders of the project with a description stating their relation to the

project.

3

2 PROBLEM ANALYSIS Mike Heddes

• Dr. D. Izzo, the ACT scientific coordinator and the creator and maintainer of the dCGP framework

written in C++ and Python.

• Dr. M. Märtens, research fellow in the ACT in the field of artificial intelligence. Dr. Märtens is the

supervisor of this project and will become the maintainer.

• Users of the service, which can be the general public because ESA decided that the project will be

open source and usable for free.

2.6 Scope

The following points fall within the scope of this project:

• Research ways of implementing dCGP in a service.

• Designing an interface for the service.

• Developing the data infrastructure for the service.

• Delivering a working service.

The following points fall outside the scope of this project:

• Maintaining or extending the dCGP framework or its dependencies.

• Maintaining or extending technologies used to build the service.

• Creating an environment on which the service can be distributed.

2.7 Client feature requests

Table 2.2 contains a list of features that Dr. Märtens and Dr. Izzo, the clients of this project, would like

to see implemented in the service. The second column specifies the type of the feature, this can either be

a requirement, success criteria or nice to have. Nice to have means that the clients would like the service

to have this functionality but it is not required to be added within this project.

Table 2.2: Client feature requests.

Feature Type

1. Users can access most of the functionalities that dCGP offers. Success criteria

2. The service can be used with minimal actions required by the user. Success criteria

3. The service can be used with minimal external dependencies. Success criteria

4. The service provides a way to view the encoded equation. Requirement

5. The service provides a way to view the evolved network topologies. Nice to have

6. The service provides a way to inspect a chromosome. Nice to have

4

3 SOLUTION ANALYSIS Mike Heddes

3 Solution analysis

This chapter contains the research conducted during this project meant to answer the sub questions

stated in section 2.3.

3.1 Starting point

This section describes the decisions that were made early on in the project. These decisions are seen as

a given in this report which means no further reasoning or substantiation will be given for these choices.

These decisions were made in consultation with supervisor Dr. Märtens.

3.1.1 User interface

The service will be a user interface (UI) rather than a code library. This decision was made based on the

following insights.

1. The original dCGP project was implemented in C++ with bindings for Python. Creating another

binding library will add little value since most scientific computing is done using Python for which

bindings already exist.

2. A UI is more approachable for the general public because it is familiar and does not require reading

into the project to get started.

3.1.2 Web application

The service will be a web application rather than a native application. This decision was made based on

the following insights.

1. Native applications can only be made for one platform because all platform manufacturers (Apple,

Google, Windows) use different languages and software development kits (SDK) to develop an

application. There is no standardization because every platform has its own SDKs which means

that one would have to relearn everything when switching to a different platform. The W3C

standards make sure that all browsers follow the same application programming interface (API)

implementation in JavaScript.

2. Native applications are written in lower level languages than JavaScript like Objective-C on iOS

and macOS, Java on Android and C++ on Windows. Using lower level languages makes the code

in general harder to understand and reason about.

3. Native applications in general are faster because they are written in a lower level language. However

there is a new web technology called WebAssembly which makes it possible to execute low level

code on the web at near native speed. Another way could be to run the computation heavy tasks

on the server where the fastest native implementation can be used. Ways of running the dCGP

code are further discussed in sections 3.7 and 3.8.

4. Web applications have a higher chance of getting contributors because the entry level of making a

JavaScript application is lower than making a native application. In addition, according to Stack

Overflow7 there are more JavaScript developers then there are for any platform specific language.

3.2 Differentiable Cartesian Genetic Programming

This section answers three research questions, what does dCGP do, how does dCGP work and what can

dCGP be used for. At its core Cartesian Genetic Programming (CGP) provides a way to encode a

representation of a computational graph as a chromosome (see Turner, 2015, para. 3.2). dCGP adds the

functionality of differentiating the encoded equations which makes it possible to learn constants. The

chromosome is a list of numbers that contains the identifiers of the inputs and the kernel identifier for

each node. An evolution algorithm can change the numbers in the chromosome to alter the encoded

equation, this is called symbolic regression. Often the goal is to find an equation that closely resembles

7Stack Overflow developer survey: https://insights.stackoverflow.com/survey/2018.

5

https://insights.stackoverflow.com/survey/2018

3 SOLUTION ANALYSIS Mike Heddes

the mapping between numerical input and output data. Appendix A covers what dCGP is, how it works

and what it can be used for in greater detail.

3.3 Target audience

This section answers the research question who are interested in dCGP as a service. From an interview

with Dr. Märtens (Heddes, 2019a) it became clear that the target audience is interested in dCGP and

might have little to very advanced knowledge about dCGP. Dr. Märtens pointed out that the service

should at least be usable for advanced users so the service can be used internally. In addition, he envisions

that the service will be used to showcase dCGP to stakeholders and directors to create excitement and

curiosity. Lastly, he mentioned that the service could be used as an introduction and a playground for

people that are new to the dCGP framework to get a feeling of what dCGP does and is capable of.

The main target audience for this project are scientists and engineers that frequently work with or make

measurements during their work. This for example applies to material scientists, bio engineers and

many more disciplines. For many of these disciplines finding the equational relation between measured

properties is more interesting than the measurements themselves. So far it has however been quite hard

and time consuming to find the equational relation between properties from measurements. Providing

an accessible and easy to use service on which dCGP can effortlessly be used allows these scientists and

engineers to do their work faster and will convince more engineers and scientists to use dCGP.

It seemed reasonable to assume, based on the nature of the original dCGP project, that the target audience

has at least basic knowledge of computer science and mathematics and is comfortable navigating around

in modern web applications. The education level of the target audience is set to be at least a bachelor’s

degree. The target audience consists mostly of engineers that want a quick and easy to use application

to find the equational relation between inputs and outputs.

3.4 Controls and functionality

This section answers the research question which controls should be available on the service. Figure

3.1 is a function diagram that states the controls and functionalities that arose from an interview with

Dr. Märtens (Heddes, 2019a). The top of the function diagram states the main function of the service

which is providing dCGP as a service. This main function is then divided in subfunctions which are again

divided in subfunctions to create a breakdown of all the functionalities of the service. Users of the service

must be able to run an evolution algorithm, change the parameters of the evolution and the expression

and, upload custom data.

Provide service

Upload data Set parameters Run evolution

Select inputs Select outputs Handle constants Show progress

Show equation Compare data Show loss

Figure 3.1: dCGP service function diagram

6

3 SOLUTION ANALYSIS Mike Heddes

3.5 Application development options

This section answers two research questions, how can the service integrate the dCGP framework and

which technologies can be used to make the service. The sections 3.6 till 3.9 describe different options

for developing the service. These options led to the in figure 3.2 depicted possible combinations to

make the service. The first row of the figure specifies the frameworks that can be used to make the

web application, these are the Django Python framework, React JavaScript framework, Vue JavaScript

framework and Angular JavaScript framework. The last row specifies the ways dCGP can be integrated

in the application, these are using the Flask Python library, FastAPI Python library or by compiling

dCGP to WebAssembly. The second row specifies different approaches to combine dCGP with a web

application.

Django React Vue Angular

Server side Client-server model Client side

Flask FastAPI WebAssembly

Figure 3.2: Possible combinations to make the service

3.6 Serving a web application

This section describes the different commonly used approaches for making a web application.

3.6.1 Server-side

With a server-side application the server handles all the logic of the application and the generation of the

HTML page which is then send to the client to be displayed. The server application can be written in any

language which makes it possible to use the existing C++ or Python dCGP implementation. Because all

the logic of the application is on the server every user interaction will request a new page from the server

which adds a significant networking delay on user interactions. This can break the illusion that the user

is using a native application.

Hosting a server-side application will require continuous maintenance to update the software, certificates,

user accounts and to fix security vulnerabilities. Some of the mentioned maintenance points can be taken

care of by renting a server. However not all security vulnerabilities can be eliminated by renting a server,

some vulnerabilities like cross-site-scripting and bugs in the application are possibly introduced by the

code written for the application.

3.6.2 Client-side

With a client-side application the server sends all the logic of the application to the client including

the logic to generate the HTML of the page. This has the benefit of being able to handle user interac-

tions immediately, which gives the application a native like experience. Client-side code is restricted to

JavaScript and WebAssembly8 which means that the current dCGP implementations can not be used

directly and will need to be ported to either WebAssembly or JavaScript.

8WebAssembly can not access the document object model (DOM) of the page. This means that only JavaScript can be

used to make changes to the page. WebAssembly can be used to do general calculations.

7

3 SOLUTION ANALYSIS Mike Heddes

Not having a central server application that keeps track of the users makes it hard to send information

between users. However with a client-side application the server only needs to serve static content which

makes renting a server free in the case of some server providers9 and eliminates maintenance. Having

the logic of the application be executed on the client also prevents security issues. For example, when an

infinite loop occurs the client is in control and will close or reload the page. This is still unfortunate for

the one user but does not influence the experience of other users which is the case if it would happen on

the server.

3.6.3 Client-server model

With a client-server model there are two applications running, one on the server and one on the client.

The server-side application is responsible for the core logic of the application, which is dCGP in this case.

The client-side application is responsible for displaying the content provided by the server via an API

and for handling user interactions. A client-server model has the benefits of separating the concerns and

being able to make the server application in any language so the current dCGP implementation can be

used while still being able to immediately respond to user interactions.

Using a client-server model comes with the same server related drawbacks as a server-side application.

For corporate sized web applications the client-server model is considered the standard method of making

a web application because it scales well and provides a way of keeping sensitive company logic on the

server.

3.7 dCGP on the server

In this section two options for hosting an API web server with Python are described. Only Python is

considered because between C++ and Python, the dCGP implementations, Python has a simpler syntax

and developing an application with Python will take considerably less time than in C++ although the

C++ implementation will execute faster.

3.7.1 Flask

Flask is the most known and widely used Python web framework. It is able to perform all the common

tasks a web API needs to do but lacks a build-in solution for WebSockets. Flask has a simple API and a

large community with many resources to learn from online. Flask’s API can easily be connected with the

dCGP library to make the resolvers for the API endpoints. Because of the large user base and intensive

testing Flask has proven to be reliable with many use cases.

3.7.2 FastAPI

FastAPI promotes itself as being a faster alternative to Flask. FastAPI is based on the Starlette library

which is based on the uvicorn library. A third-party benchmark10 shows that uvicorn is the fastest Python

framework followed by Starlette and FastAPI with 86.3% and 72.5% of the performance respectively. The

FastAPI provides an easy to use high level API with integrated data validation and serialization, it also

provides automated API documentation. It however has a much smaller community than Flask which

results in fewer resources and a less extensively tested codebase.

3.8 dCGP on the client

This section describes the different ways the original dCGP implementation can be used on the client in

the case of a client-side application. The dCGP library can be rewritten in JavaScript, the C++ source

code can be compiled to JavaScript or, the C++ source code can be compiled to WebAssembly. The

next section will look at the WebAssembly approach because it provides the fastest execution and makes

it possible to reuse the existing C++ dCGP source code.

9GitHub provides free hosting for static sites.
10Python web framework benchmark: https://www.techempower.com/benchmarks/#section=test&runid=

7464e520-0dc2-473d-bd34-dbdfd7e85911&hw=ph&test=query&l=zijzen-7.

8

https://www.techempower.com/benchmarks/#section=test&runid=7464e520-0dc2-473d-bd34-dbdfd7e85911&hw=ph&test=query&l=zijzen-7
https://www.techempower.com/benchmarks/#section=test&runid=7464e520-0dc2-473d-bd34-dbdfd7e85911&hw=ph&test=query&l=zijzen-7

3 SOLUTION ANALYSIS Mike Heddes

3.8.1 WebAssembly

This section describes WebAssembly and the different methods that are available to port the C++ dCGP

library to WebAssembly.

WebAssembly was introduced in Bringing the Web up to Speed with WebAssembly (Haas et al., 2017)

which was a collaboration between all major web browsers (Chrome, Firefox, Safari and Edge) to “address

the problem of safe, fast, portable low-level code on the Web”. WebAssembly is a newly developed

assembly-like low-level byte-code language. The idea of WebAssembly originated from the by Mozilla

created JavaScript subset called asm.js which used specific JavaScript syntax that the browser’s JavaScript

compiler could efficiently and effectively optimise to get near native speed.

The first option to port the C++ dCGP library to WebAssembly is to compile the original C++ source

code to WebAssembly using Emscripten. “Emscripten is a toolchain for compiling to asm.js and We-

bAssembly, built using LLVM, that lets you run C and C++ on the web at near-native speed without

plugins.” as described by the Emscripten documentation11. Emscripten was first introduced in Em-

scripten: An LLVM-to-JavaScript Compiler (Zakai, 2011) and was developed alongside the creation of

asm.js to provide a way to generate asm.js code from C or C++. Since WebAssembly was created Em-

scripten has updated to also allow WebAssembly as a compilation target. Emscripten provides many

helper functions and tools for porting existing C or C++ projects to WebAssembly.

An alternative to Emscripten is called Minimal WebAssembly which describes itself as “a minimal toolkit

and runtime ... to produce and run WebAssembly modules”. This toolkit has the advantage of being

easier to get started with because the API surface is smaller than that of Emscripten. Having a smaller

API comes with the drawback that a lot of things that Emscripten already provides need to be coded by

hand.

3.9 Markup generation

This section describes four different frameworks that are available for developing interactive web appli-

cations. The four frameworks covered are Django, React, Vue and Angular.

3.9.1 Django

Django is a Python web framework that provides an all-in-one solution for web applications. It handles

everything from user authentication, databases to markup generation. Django is an easy to use framework

that can help speedup the process of developing a web application. Django runs fully on the server where

it generates the HTML and sends that to the client. Because of the many features Django provides the

framework is bloated and has a large API surface. Django is an opinionated framework which leaves

the developers working with Django little freedom in designing the application architecture. Django is

thoroughly tested by its many contributors and users.

3.9.2 React

React is a JavaScript frontend UI framework created by Facebook. React provides a declarative way

of writing reusable components (Occhino & Walke, 2013). It is currently the most popular frontend

framework, used in production by Facebook and Instagram. The large community behind React provide

many resources to learn from and tools to build applications faster. React is unopinionated which means

it can be combined with any other library. Combining React with a data handling library like Redux

or MobX is a common setup. React provides tools to test the components which is necessary to make

a framework a scalable solution. React is often written in jsx which provides HTML-like syntax in

JavaScript. This has the disadvantage that new developers need to learn the subtle differences between

jsx and HTML.

11Emscripten documentation: https://emscripten.org/.

9

https://emscripten.org/

3 SOLUTION ANALYSIS Mike Heddes

3.9.3 Vue

Like React, Vue is also a JavaScript frontend UI framework but instead of writing jsx it works with HTML

templates that it binds to JavaScript objects (You, 2017). Vue is reactive which means that changes in

the data of the object will result in changes in the view. The size of the Vue library is considerably

smaller than that of React. A disadvantage of Vue is its small community which results in fewer helper

packages available to speed up development. Vue lacks large corporate backing which might help explain

its smaller community.

3.9.4 Angular

Other than Vue and React, Angular is an opinionated JavaScript framework which provides everything

necessary to make a view and to handle complex data (Green & Seshadri, 2013). Because it is opinionated

it lacks the flexibility that Vue and React have. Angular has a steep learning curve because of its large

API surface and complex data binding. The techniques it uses became outdated since its launch in 2012.

Angular is backed and developed by Google which makes it more likely that it will stay around for a

longer time than Vue.

3.10 Application inputs and outputs

Inputs to the service consist mainly of user interactions, this can be via the mouse, keyboard or touch.

Other inputs are the custom data a user can provide and the URL the user visits. The environment of

the user can also be seen as an input to the application because it determines which features are available

for the service to use. A dCGP expression takes eight arguments which are the number of inputs and

outputs of the expression, the number of rows and columns of the graph, the number of levels back a

connection can maximum be, the arity of each kernel, a list of the kernels and a seed.

The UI is the main output of the application, it consists of an equation view, the loss of the current

expression with the labels, the amount of steps evolved and a plot with labels and predictions. Another

output of the application is the equation as a string which can be copied and used for further research.

3.11 Requirements

This section answers the research question what requirements must the service meet. The requirements

have been put together based on the previously described research and the goals of the client. The

requirements are stated in table 3.1.

All requirements, apart from 5 and 7, were verified using automated unit tests that executed on every

iteration to determine whether the code base meets the requirements. Requirement 5 was verified by

visiting the web page and seeing if the functionalities were working. Requirement 7 was verified by

opening the browser’s debugger and reading the time between interaction and response.

3.11.1 Selection criteria

In addition to the requirements of the service the following selection criteria have been put together to

act as a means of making substantiated decisions about which technologies to develop the service with.

1. Service is usable in minimal amount of steps.

2. Response time of the application is fast.

3. Reference to the service is easy to share with others.

4. Evolution runs fast.

5. Time till page load is short.

6. Maintainability of the code is good.

7. Used technology has many developers.

10

3 SOLUTION ANALYSIS Mike Heddes

Table 3.1: Service requirements

Requirement Source

1. The application must be able to evolve an expression. Miller and Thomson, 2000

2. The application must provide the mu plus lambda evolution

algorithm.

Turner, 2015, par. 3.4

3. The application must provide the gradient descent algorithm. Turner, 2015, par. 2.6.9

4. The application must be able to show the generated equation. Heddes, 2019a

5. The application must work without dependencies to be in-

stalled by the users.

Self imposed

6. The application must inform the user if any user input is in-

valid.

Self imposed

7. The application must respond to user interactions in under

500 milliseconds.

Self imposed

8. Users must be able to change which kernels are active. Heddes, 2019a

9. Users must be able to change the size of the expression. Heddes, 2019a

10. Users must be able to add ephemeral constants. Izzo, Biscani, and Mereta, 2016

11. Users must be able to remove ephemeral constants. Izzo, Biscani, and Mereta, 2016

12. Users must be able to change the value of the ephemeral con-

stants.

Izzo, Biscani, and Mereta, 2016

13. Users must be able to provide its own data for evolution. Heddes, 2019a

14. Users must be able to evolve on data without needing to up-

load data.

Self imposed

3.11.2 Selection criteria weights

Not all the selection criteria have the same importance for the service. In oder to reflect the importance

differences in the decision making based on the selection criteria a weight has been assigned to every

selection criteria. The weights range from 1 to 5 with the latter being the best score. Table 3.2 states

the weight for every selection criteria followed by a description of why that weight has been assigned.

Table 3.2: Selection criteria weights.

Weight Description

1. 5 This is essential to create an easy to use service.

2. 2 A slow responding application results in bad user experience but fast responses are not

essential.

3. 4 This is essential to spread the service fast and to do effective marketing.

4. 3 It is important that the service runs as fast as possible but it is not essential to the

application.

5. 1 The page load is a onetime payment by the user and is therefore less important then a

fast application.

6. 2 Since the application will likely be maintained by less experienced developers it is im-

portant that the application is easy to maintain.

7. 1 Using a technology with many developers will help to find maintainers in the future but

is not an important distinction.

11

4 TECHNOLOGY SELECTION Mike Heddes

4 Technology selection

This chapter describes and substantiates the decisions that were made related to the approach and

framework used for the service.

4.1 Application approach

The first selection matrix determined the kind of application that was made. This could either be a

server-side, client-side or client-server model application as described in section 3.6.

Table 4.1: Comparison of the following web application approaches, a server-side (S), client-side (C) or

client-server model (CS) application.

Selection criteria weight S C CS

1. Service is usable in minimal amount of steps. 5 10 10 10

2. Response time of the application is fast. 2 1 8 6

3. Reference to the service is easy to share. 4 10 10 10

4. Evolution runs fast. 3 7 10 7

5. Time till page load is short. 1 10 4 7

6. Maintainability of the code is good. 2 5 8 2

7. Used technology has many developers. 1 2 10 10

Score 135 166 144

The selection matrix in table 4.1 shows that making the service as a client-side application would result

in the best match with the selection criteria of the service. The score for each approach on every selection

criteria is based on its relative strengths and weaknesses against the other approaches and against the

theoretical best possible implementation. For instance, a server-side application has a very long time

till interaction because it needs to make a network request on every interaction. A client-server model

application improves this significantly by being able to respond to an interaction immediately while

waiting for the results to return from the server. A client-side application improves this even further by

sending all the related code to the client so no additional network requests need to be made to handle an

user interaction. A client-side application does not score 10 points because sending all the related code to

the client makes the first page load take longer but subsequent interaction can be handled immediately.

After choosing the client-side application approach there are still options as to which framework to use

to make the application which will be selected in the next section.

4.2 Frontend framework

The second selection matrix determined the frontend framework that was used to make the application.

This could either be React, Vue or Angular as described in section 3.9. Django is not compatible with a

client-side application and is therefore not an option in this selection.

The selection matrix in table 4.2 shows that making the application using Vue or React would both be an

equally good choice. In the end React has been chosen for the service because I am already familiar with

it, which saves a lot of time spent on learning a new library and ecosystem. The score for each framework

on every selection criteria is based on its relative strengths and weaknesses against the other frameworks

and against the theoretical best possible implementation. For instance, Angular has the longest page

load time because it is the biggest framework which needs to be send to the client. React is much better

because the size of the framework is much smaller. Vue is an even smaller framework which reduces time

till page load even more. Vue does not score 10 points because there are still bytes that need to be send

to the client, a native application has the code for the application already on the client which makes the

time till page load practically zero.

Figure 4.1 shows which technologies the resulting application will have.

12

4 TECHNOLOGY SELECTION Mike Heddes

Table 4.2: Comparison of frontend frameworks.

Selection criteria weight React Vue Angular

1. Service is usable in minimal amount of steps. 5 10 10 10

2. Response time of the application is fast. 2 8 10 4

3. Reference to the service is easy to share. 4 10 10 10

4. Evolution runs fast. 3 8 10 6

5. Time till page load is short. 1 5 7 1

6. Maintainability of the code is good. 2 7 5 2

7. Used technology has many developers. 1 10 2 6

Score 159 159 127

Django React Vue Angular

Server side Client-server model Client side

Flask FastAPI WebAssembly

Figure 4.1: The combination that best fitted the project’s selection criteria.

13

5 DETAILING Mike Heddes

5 Detailing

This chapter describes the implementation process of the service, methods and tools used to make the

application and three cases that describe interesting and challenging aspects of the application.

5.1 Tools

During development of the service the following tools were used.

• Adobe XD is used to create wireframes for the design of the application. Adobe XD provides an

easy to use UI to draw shapes, place text and images and, assign colors. Creating designs is efficient

which allows exploring more variations of a design.

• CircleCI is a continuous integration (CI) provider that is used to automate the repetitive tasks that

come with validating, testing and releasing code. The CI system is triggered on every change on

GitHub, for example, a pull request was made or the master branch was updated. In general, the

tests and validation are run on pull requests to determine whether the code is valid, a new version

of the code is released when the master branch updates.

• Create React App (CRA) is used to initialize a React project with all the boilerplate necessary

to develop a React web application already in place. CRA is maintained by Facebook, it allows

updating to the latest version after initializing a project12 which removes the overhead of staying

up-to-date with all the boilerplate libraries.

• Git is used to have version control of the code. At its core Git provides a way of attaching a unique

identifier to a snapshot of the projects files, this is called a commit. Multiple commits can form a

history. The snapshots are used to allow collaboration on coding projects by handling the merging

of files based on their shared and separate history.

• GitHub is used as a source of truth from which code gets cloned to either develop or release. GitHub

is a website that provides a UI for most of the Git commands. It also provides issue tracking and

pull requests which are requests contributors can make to merge their code changes with the source

of truth. The master branch is used as the source of truth.

5.2 Iterative design

The development of the service was done using the iterative design methodology. Based on the method-

ology, early on in the development process a prototype was made which was then updated on a regular

basis. The updated prototype was used to ask for feedback, this ensured that there were many points

during the development process where the clients could give feedback and had a saying in what the next

steps should be. It also reduced time wasted on things that would not work out in the end because they

could be spotted early on.

The following list specifies the iterations that were done to develop the service. The list is simplified and

only includes notable iterations to give a sense of how the development process went.

1. Minimal dCGP example showing a random chromosome.

2. Add an evolution view.

3. Implement start, stop and pause of the evolution.

4. Add a plot for the loss of the evolution over time.

5. Redesign the UI.

6. Add active kernel selection functionality.

7. Add a plot for the labels of the data set and predictions of the expression.

8. Add network size and connection selection functionality.

9. Add data set presets.

10. Add the prediction equation view.

11. Add constants functionality.

12. Add gradient descent algorithm option.

12CRA can not update when the eject command is executed.

14

5 DETAILING Mike Heddes

5.3 Cases

This section will describe three interesting and challenging implementation cases.

5.3.1 UI design

The UI of the application was created in three iterations. The first iteration naively added all the

functionalities of the service on the page. The second iteration managed to put all the settings in the

initial view of the page to remove the need for users to navigate around to start evolving. All the settings

are by default set to a valid configuration that is able to evolve so new users are able to press start and

the service will try to evolve to the optimal solution right away. The second iteration made sure that the

second point stated in section 3.1.1, about approachable UI, is met by using industry standard UI design

principles for user input elements like radio buttons, checkboxes and icon buttons.

The final design shown in figure 5.1 has more functionalities and rearranges the settings panels to mimic

the steps early adopters during validation naturally took (Heddes, 2019b). Most users would first select

their network size and whether they want constants. Next they would decide which kernels can be used.

Lastly, the user would switch between evolving and changing the algorithm which are therefore placed

next to each other at the end of the row. The figures showing the design iterations can be found in

appendix B.

Figure 5.1: dCGP service final UI design.

5.3.2 WebAssembly bindings

The dCGP library depends on 6 other C++ libraries. In order to compile the dCGP bindings to We-

bAssembly these dependent libraries needed to be compiled using Emscripten. The dCGP bindings were

15

5 DETAILING Mike Heddes

then compiled and linked against the compiled dependencies to create the dcgp.wasm WebAssembly file

which can be loaded in JavaScript to use dCGP. The API of the dCGP WebAssembly bindings should

be clear and familiar for developers who have used the Python or C++ dCGP library. However, with

the generated dcgp.wasm file alone this was not the case. This is because the bindings require that com-

plex parameters are encoded and stored in shared memory between WebAssembly and JavaScript which

makes the API hard to understand. To improve this a new library called dcgp.js was created. Users of

the dcgp.js library do not need to worry about WebAssembly or the bindings. This makes the API of the

library feel as if it is using solely JavaScript. The library encodes and decodes the arguments and passes

them on to the WebAssembly C++ code where the low level execution happens. A detailed explanation

of the WebAssembly bindings can be found in appendix C.

5.3.3 Web Worker

To prevent the execution of dCGP from blocking the JavaScript main thread, which must do the UI

updates, the dCGP code is executed in a separate thread. In JavaScript a separate execution thread can

be created with a Web Worker. The messages to and from the dCGP thread are going through a proxy13

which makes interacting with the dCGP thread similar to other asynchronous functions in JavaScript.

The proxy sits on the main thread instead of on the dCGP thread because it tries to simplify the requests

to and responses from the dCGP thread that are invoked on the main thread. The dCGP thread doesn’t

need a proxy because its only concern is knowing what is requested and responding accordingly. The

proxy keeps track of which response from the dCGP thread corresponds to which request from the main

thread. The reason why a proxy is used to centralize the communication between the threads is covered

in appendix E.2.

On the dCGP thread requests are handled using Observables which can be seen as streams. A request

comes in as an item in the stream and based on the type of request it gets transformed, handled and at

the end piped into the responses of the worker. Observables are used because of its ability to describe the

flow of data over time whereas other methods only describe the data flow at a given moment. A detailed

explanation of the use of Web Workers in the application can be found in appendix D.

5.4 GitHub repositories

The result of this project is spread over two GitHub repositories which are called dcgp-web14 and dcgp.js15.

There are three main software development platforms, besides GitHub there are also GitLab and Bit-

bucket. All three offer mostly the same functionality but GitHub is the most popular as seen in appendix

F which makes projects hosted on GitHub more likely to be discovered. ESA has an organization page

on GitHub for all its open source projects. Based on these points it was decided to use GitHub as the

development platforms for this project.

dcgp.js is the stand-alone JavaScript library for the C++ bindings of the dCGP library. dcgp-web

contains the code for the website and uses the dcgp.js library for its calculations. Spreading the project

over two repositories adds a distinct separation between the library and the website. This helps future

maintainers and contributors to find what they are looking for faster. It also allows contributors that are

not interested in the website to work on the dcgp.js library without needing to interact with the website

aspect of the service and vice versa.

5.5 Tests and validation

The dcgp.js library has unit tests for every function and for some extreme equation cases to prove that

the library is functioning correctly and to prevent regression from happening. All the tests for dcgp.js

are automatically run on every pull request on GitHub, this is part of the continuous integration setup

for the project. If the tests do not pass the pull request is not allowed to be merged with the code base.

13A proxy is an intermediary for requests and responses.
14dcgp-web repository: https://github.com/esa/dcgp-web.
15dcgp.js repository: https://github.com/esa/dcgp.js.

16

https://github.com/esa/dcgp-web
https://github.com/esa/dcgp.js

5 DETAILING Mike Heddes

This prevents the source of truth from containing regressions and lowers the change of having bugs. A

more in-depth description of unit tests and an example are given in appendix G.

The web application has continuously been tested and validated by members of the ACT (Heddes,

2019b) who would report issues which would then be fixed for the next iteration. The web application

also has unit tests to determine whether the application can render without errors and to verify that

the application meets the requirements. These tests prevent a pull request from merging that does not

meet the requirements. In appendix E two bugs that were discovered during the development phase are

discussed. In appendix H three manual verification cases are covered that show that the application is

handling these cases correctly.

5.6 Documentation

Because the dcgp.js library can be used in other projects by different developers it is fully documented16.

The expression page of the documentation is shown in figure 5.2 in which the parameters for an expression

are stated with a description and an example of how to create an expression. The documentation is similar

to that of the Python dCGP documentation. All the helper functions that are not exposed to the users of

the library are documented using structured comments called JSDoc which has become the standard way

of documenting in JavaScript. The comment describes the function, its parameters and what it returns.

This is helpful information for the next developer that needs to work with this function or wants to use

it.

Figure 5.2: dcgp.js expression documentation page.

For both the dcgp.js library and the web application the code is as self documenting as possible by

choosing appropriate variable names and using a clear and consistent code style. Self documenting code

can be seen as the opposite of minified code in which all the variable names are as short as possible to

make the file as small as possible which compromises the readability of the code. Dividing the code into

functions with a distinct responsibility also improves the readability of the code. Prettier17 is used to

achieve a consistent code style because of its wide adoption in the JavaScript community as seen on the

users page of their website18.

16dcgp.js documentation page: https://esa.github.io/dcgp.js/.
17Prettier website: https://prettier.io/.
18Prettier users page: https://prettier.io/en/users/.

17

https://esa.github.io/dcgp.js/
https://prettier.io/
https://prettier.io/en/users/

6 REALIZING Mike Heddes

6 Realizing

This chapter describes the final steps in realizing the service covering distribution, marketing and main-

tenance.

6.1 Distribution

The distribution happens via GitHub’s servers because they offer a free solution for serving static files.

Everyone can navigate to the website19 in their browser of choice. The GitHub servers use a large content

delivery network with locations across the world. This means that the web application is served reliably

and with low latency because there is almost always a data center nearby.

Because of the continuous integration setup a new version of the service will be released automatically

every time someone makes a changes to the code on the master branch of the project on GitHub. This

new version will then automatically be served to new visitors of the service and existing users of the

service will get the update on the next visit20.

6.2 Marketing

The ACT will promote and highlight the service on their website21 and members of the ACT will demon-

strate the tool to colleagues and other people with an interest in dCGP. For instance, Dr. Märtens told

his colleagues from a different department about the dCGP service and Dr. Summerer, the head of the

ACT, shared the dCGP service with Dr. Franco, the Director of Technology of ESA, who then shared

the service with the departments that might be interested. In addition, the service will be announced on

genetic programming and web development related blogs and forums.

6.3 Maintenance

Because the entire web application is compiled to static files there should be little to no maintenance

necessary but in the occasion that the service needs to be updated Dr. Märtens will lead the task and

assign someone to make the appropriate changes. These changes will then be merged with the GitHub

repository if all the tests passed a new version of the application will automatically be released because

of the continuous integration setup.

19dCGP web application https://esa.github.io/dcgp-web/.
20Because the service uses a web technology called service workers to cache resources, which drastically decreases page

load time, the new version of the service will be served to existing users of the service after they closed all their browser

tabs of the service.
21ACT website: http://www.esa.int/gsp/ACT/index.html.

18

https://esa.github.io/dcgp-web/
http://www.esa.int/gsp/ACT/index.html

8 RECOMMENDATIONS Mike Heddes

7 Conclusion

The goal of this project was to make it more convenient to use dCGP and to make tools that provide

insight in the evolution and the resulting expression and equations. These two goals were grouped under

the phrase “providing dCGP as a service”. The underlying idea was to move dCGP one step further from

an academic experiment towards a product (software tool) helpful for engineering. The main question to

answer during this project was how can one best provide dCGP as a service.

dCGP is a framework that finds a mapping between numerical data in the form of an equation. This

works by combining the dCGP library with an evolution algorithm that will change the encoded values of

the expression. This approach can be used for any problem where the mapping between input and output

data is of importance. The analysis showed that mainly scientists in the field of genetic programming

and engineers in general are interested in a dCGP web application to simplify the use of dCGP.

To provide an useful dCGP service for scientists and engineers analysis showed that it needs to be able to

run an evolution algorithm, change the parameters of the evolution and the expression and, users must be

able to upload custom data. The C++ dCGP library is integrated in the service by compiling the library

to WebAssembly, this way code executes at near native speed. The user interface of the application is

made using React because it has many resources and large developer and corporate backing.

Using dCGP is now effortless for every engineer, simply by navigating to the website of the service,

uploading data and evolving. This opens up the possibilities for many projects to use dCGP to do

analysis on data. Genetic programming scientists can now use the service to quickly test their cases and

to get an intuition of how an evolution behaves over time.

8 Recommendations

To provide users with a better intuition on how the graph structure of dCGP works a view of the graph

can be added to the application by the maintainers and/or contributors of the project. The graph view

can show which kernels are used and which nodes are connected. This could change in real-time while

the application is evolving so the user can see how the graph structure changes over time. Each node

could show its value so it is easier to reason about how the output is formed based on the intermediate

values.

The graph view can be implemented by making a grid view with the same number of rows and columns as

the expression’s cartesian grid. Each cell of this grid represents a node of the computational graph. Each

node has inputs and a kernel type associated to it. When starting from the outputs all the connections

can be traced by following the inputs of every visited node. With this implementation the unvisited

nodes are inactive, meaning they do not contribute to an output, and can get a distinct style.

In addition to the ES − (µ + λ) and gradient descent algorithms an algorithm combining both can be

added by the maintainers and/or contributors of the project to achieve potentially better results in a

shorter time. The hybrid algorithm should first mutate the current µ best chromosomes to get λ mutated

chromosomes. Then, before selecting the new µ best chromosomes perform N amount of gradient descent

steps on the λ mutated chromosomes. This algorithm will improve the evolution for the cases where the

mutation makes an equation similar to the target mapping but the provided constants have values far

from the target which results in that mutation not being selected.

19

REFERENCES Mike Heddes

References

Google. (2019, June 19). Software development platform interest over time [Google trends]. Retrieved

June 19, 2019, from https://trends.google.com/trends/explore?cat=5&q=%2Fm%2F04g0kcw,

%2Fm%2F0125 4f0,%2Fm%2F05mx6p6

Green, B., & Seshadri, S. (2013, April 8). AngularJS. O’Reilly Media, Inc.

Haas, A., Rossberg, A., Schuff, D. L., Titzer, B. L., Holman, M., Gohman, D., . . . Bastien, J. (2017).

Bringing the web up to speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN

conference on programming language design and implementation (pp. 185–200). PLDI 2017. event-

place: Barcelona, Spain. doi:10.1145/3062341.3062363

Hamill, P. (2004, November 2). Unit test frameworks: Tools for high-quality software development. O’Reilly

Media, Inc.

Heddes, M. (2019a, February 28). dCGP service, users and functionality. Interview with Dr. M. Märtens

research fellow in the Advanced Concepts Team of the European Space Agency.

Heddes, M. (2019b, April 16). dCGP web service feedback. Interview with E. Ozturk young graduate

trainee in the Advanced Concepts Team of the European Space Agency.

Heddes, M. (2019c, February 4). Introduction to dCGP as a service. Interview with Dr. M. Märtens

research fellow in the Advanced Concepts Team of the European Space Agency.

Izzo, D., Biscani, F., & Mereta, A. (2016, November 15). Differentiable genetic programming. arXiv:1611.04766

[cs]. arXiv: 1611.04766. Retrieved January 31, 2019, from http://arxiv.org/abs/1611.04766

Miller, J. F., & Thomson, P. (2000). Cartesian genetic programming. In R. Poli, W. Banzhaf, W. B.

Langdon, J. Miller, P. Nordin, & T. C. Fogarty (Eds.), Proceedings of the 3rd european conference

on genetic programming (pp. 121–132). Lecture Notes in Computer Science. doi:10.1007/978-3-

540-46239-2 9

Occhino, T., & Walke, J. (2013, July 8). Introduction to react.js. Seattle, WA, USA. Retrieved June 19,

2019, from https://youtu.be/XxVg s8xAms

Turner, A. J. (2015, September). Evolving artificial neural networks using cartesian genetic programming.

University of York. Retrieved from http://etheses.whiterose.ac.uk/12035/1/thesis.pdf

You, E. (2017, August 29). Vue.js: The progressive framework. New York, NY, USA. Retrieved June 19,

2019, from https://youtu.be/p2P3z7p zTI

Zakai, A. (2011). Emscripten: An LLVM-to-JavaScript compiler. In Proceedings of the ACM international

conference companion on object oriented programming systems languages and applications compan-

ion (pp. 301–312). OOPSLA ’11. event-place: Portland, Oregon, USA. doi:10.1145/2048147.2048224

20

https://trends.google.com/trends/explore?cat=5&q=%2Fm%2F04g0kcw,%2Fm%2F0125_4f0,%2Fm%2F05mx6p6
https://trends.google.com/trends/explore?cat=5&q=%2Fm%2F04g0kcw,%2Fm%2F0125_4f0,%2Fm%2F05mx6p6
https://dx.doi.org/10.1145/3062341.3062363
https://arxiv.org/abs/1611.04766
http://arxiv.org/abs/1611.04766
https://dx.doi.org/10.1007/978-3-540-46239-2_9
https://dx.doi.org/10.1007/978-3-540-46239-2_9
https://youtu.be/XxVg_s8xAms
http://etheses.whiterose.ac.uk/12035/1/thesis.pdf
https://youtu.be/p2P3z7p_zTI
https://dx.doi.org/10.1145/2048147.2048224

REFERENCES Mike Heddes

Appendices

A Differential Cartesian Genetic Programming 22

A.1 What dCGP does . 22

A.2 How dCGP works . 22

A.3 What dCGP can be used for . 22

B UI design 24

C WebAssembly bindings 27

C.1 Dependency compilation . 27

C.2 Provided API . 27

C.3 Memory management . 28

D Web Worker system 29

D.1 Proxy . 29

D.2 Observables . 29

D.3 Consistent framerate . 30

E Bugs 31

E.1 Protected division . 31

E.2 Evolution loop . 31

F Software development platform interest 32

G Unit tests 33

H Service validation 34

I Interviews 37

I.1 Introduction to dCGP as a service . 37

I.2 dCGP service, users and functionality . 37

I.3 dCGP web service feedback . 37

21

A DIFFERENTIAL CARTESIAN GENETIC PROGRAMMING Mike Heddes

A Differential Cartesian Genetic Programming

This appendix covers what dCGP is, how it works and what it can be used for.

A.1 What dCGP does

The dCGP library provides three expressions, an unweighted expression, a weighted expression and an

Artificial Neural Network (ANN) expression. These three expressions encode a directed acyclic graph of

computational nodes as a chromosome. In Evolving Artificial Neural Networks using Cartesian Genetic

Programming Turner describes the chromosome encoding used in CGP which is equivalent to an un-

weighted expression (2015, para. 3.2). CGP was originally presented in Cartesian Genetic Programming

(Miller & Thomson, 2000) as a new form of Genetic Programming. The weighted expression in dCGP

inherits from the unweighted expression and adds a weight for every connection in the network. The

original dCGP paper includes an illustration of a weighted network (see Izzo et al., 2016, fig. 2). The

ANN expression inherits from the weighted expression and adds a bias for every node in the network.

When the dCGP library is combined with AuDi22, a Automated Differentiation (AuDi) library, it provides

a way of getting automatic higher order derivatives from the dCGP expression. This combination makes

it possible to learn the constants of a function without needing to feed ephemeral constants23 in the

weighted or ANN expression. Feeding ephemeral constants in an unweighted expression was the standard

approach prior to dCGP. Algorithms to evolve a dCGP expression are not part of the dCGP library and

need to be made by the user of the library. A commonly used algorithm to evolve chromosomes is the

ES − (µ + λ)24 algorithm which keeps the best chromosome, copies the µ best chromosomes to the λ

others and mutates all λ chromosomes.

A.2 How dCGP works

When initializing a new dCGP expression the connections, kernels and if applicable the weights are

randomly picked between a lower and upper bound which are determined by the hyperparameters. When

one decides to perform n mutations on the chromosome n random indices of the chromosome are selected

and are randomly reassigned between their bounds. In addition to performing point mutations one can

also choose to perform more specific mutations, for example, on active nodes only.

When using dCGP25 in combination with AuDi the function that is encoded in the chromosome is

expressed in generalized dual numbers (gdual) instead of plain C++ double floating point numbers.

AuDi transforms the encoded function into a Taylor expansion around a point which allows to compute

the value of the function and all derivatives up to the order of the encoded function. The mathematics

and examples of using truncated Taylor polynomials are covered in the original dCGP paper (Izzo et al.,

2016), code examples are provided on the AuDi and dCGP documentation website.

A.3 What dCGP can be used for

dCGP can be used to evolve a chromosome that encodes the mapping between any number of inputs

and outputs. The only requirement is that a function must be provided that can rank the chromosomes

according to their accuracy. This function typically calculates the difference between labeled data, which

is used as a reference, and the predictions. An example of such a formula is the root mean squared error

(RMSE) as seen in equation 1 where T are the number of predictions, ŷ are the labels and y are the

predictions.

RMSE =

√∑T
t=1(ŷt − yt)2

T
(1)

22AuDi documentation: https://darioizzo.github.io/audi/.
23Ephemeral constants are constants that are guessed by the user with the idea that the chromosome will evolve the

constant to get the correct value.
24Read as evolution strategy mu plus lambda.
25dCGP documentation: https://darioizzo.github.io/dcgp/.

22

https://darioizzo.github.io/audi/
https://darioizzo.github.io/dcgp/

A DIFFERENTIAL CARTESIAN GENETIC PROGRAMMING Mike Heddes

Figure A.1: Left shows the input image which was used as the labels. The original image is titled ExoMars

images Korolev Crater c© ESA/Roscosmos/CaSSIS and is a view of the rim of Korolev crater on Mars.

Right shows the result of the evolution. For this encoding an unweighted dCGP expression was used with

r = 4, c = 512, l = 32, a = 2, Nin = 3, Nout = 3. The kernel functions +, −, ∗, ÷, sin, cos and ln were

used.

Use cases of dCGP include optimizing trajectories, finding the relation between material properties,

optimizing schedules, robot controllers and image classifiers. Figure A.1 shows the result of an evolution

that tried to find the mapping between coordinates and colors. The dCPG expression used during

evolution has 3 inputs, the first two are the x and y coordinates and the third input is an ephemeral

constant with value 1. The expression has 3 outputs which are the red, green and blue color channels of

the pixel at location x, y. Although the exact representation of the reference image was not found it is

clear that the evolution found some features that are present in the reference image. A larger weighted

dCGP expression is likely to improve these results.

23

B UI DESIGN Mike Heddes

B UI design

This appendix contains the design iterations for the UI of the service.

The UI of the application was created in three iterations. The first iteration, as seen in figure B.1,

naively added all the functionalities of the service on the page. The second iteration, as seen in figure

B.2, managed to put all the settings in the initial view of the page to remove the need for users to

navigate around to start evolving. All the settings are by default set to a valid configuration that is able

to evolve so new users are able to press start and the service will try to evolve to the optimal solution

right away. The final design, as seen in figure B.3, has more functionalities and rearranged the setting

panels to mimic the steps early adopters during validation naturally took (Heddes, 2019b). Most users

would first select their network size and whether they want constants. Next they would decide which

kernels can be used. Lastly, the user would switch between evolving and changing the algorithm which

are therefore placed next to each other at the end of the row.

Figure B.1: dCGP service UI design iteration one.

24

B UI DESIGN Mike Heddes

Figure B.2: dCGP service UI design iteration two.

25

B UI DESIGN Mike Heddes

Figure B.3: dCGP service UI design iteration three.

26

C WEBASSEMBLY BINDINGS Mike Heddes

C WebAssembly bindings

This appendix describes the WebAssembly bindings implementation. The WebAssembly bindings are

the to WebAssembly compiled C++ functions that interact with the dCGP library. The generated

WebAssembly file can be loaded in JavaScript which is then able to call the exported C++ functions.

C.1 Dependency compilation

In order to be able to compile the dCGP C++ library all of dCGP’s dependencies need to be compiled

first, which are:

• Boost version 1.6.1.

• GMP version 6.1.2

• MPFR version 4.0.1

• MP++ version 0.9

• Piranha version 0.11

• AuDi version 1.6.3

• dCGP version 1.2.0

The installation scripts for Boost, GMP and MPFR are based on a project by Marcos Scriven called

CGAL26 in which he compiled these libraries using Emscripten. The complete compile and install script

can be found on GitHub as a Dockerfile27. The pseudo-code for installing the dependencies can be found

in algorithm 1. The related discussions are found in issue 10 on GitHub28.

Algorithm 1: Install dCGP’s dependencies

Result: Compiled and installed dependencies

1 for each dependency do

2 Download sourcecode;

3 Checkout at specific version;

4 Configure build script;

5 Compile and install;

6 end

C.2 Provided API

The exported C++ functions can only take numbers as arguments and may return a single number. This

restriction makes working with the raw exported functions hard and leads to an unpleasant developer

experience. Due to the fairly recent introduction of WebAssembly transferring complex data is not

implemented in the WebAssembly specification yet but is on the roadmap for the coming years29. This

means that for the time being all the higher level datatypes such as strings, arrays and objects need to

be encoded in numbers only before being provided as arguments to the exported functions.

The details on how to encode and decode common JavaScript data structures is covered in section C.3. To

remove the overhead of using the raw exported C++ functions a wrapper library was made called dcgp.js30

to provide an easy to use abstraction over the raw C++ function exports. The API implementation31

is based on the Python implementation of dCGP called dcgpy32 but makes use of property getters and

setters in JavaScript to make the API follow the commonly used JavaScript coding style.

26CGAL repository: https://github.com/marcosscriven/cgaljs
27dCGP dependencies installation script: https://github.com/mikeheddes/dcgp.js-dependencies-image/blob/master/

Dockerfile
28Installation discussion on GitHub: https://github.com/esa/dcgp.js/issues/10
29WebAssembly future features: https://webassembly.org/docs/future-features/.
30dcgp.js repository: https://github.com/esa/dcgp.js.
31dcgp.js documentation: https://esa.github.io/dcgp.js/.
32dcgpy documentation: https://darioizzo.github.io/dcgp/docs/python docs.html.

27

https://www.boost.org/users/history/version_1_68_0.html
https://gmplib.org/download/gmp/
https://www.mpfr.org/mpfr-4.0.1/
https://github.com/bluescarni/mppp/releases/tag/v0.9
https://github.com/bluescarni/piranha/tree/46c2a315acac11fd2bd338e277ef6d2e537dcc8a
https://github.com/darioizzo/audi/releases/tag/v1.6.3
https://github.com/darioizzo/dcgp/releases/tag/v1.2
https://github.com/marcosscriven/cgaljs
https://github.com/mikeheddes/dcgp.js-dependencies-image/blob/master/Dockerfile
https://github.com/mikeheddes/dcgp.js-dependencies-image/blob/master/Dockerfile
https://github.com/esa/dcgp.js/issues/10
https://webassembly.org/docs/future-features/
https://github.com/esa/dcgp.js
https://esa.github.io/dcgp.js/
https://darioizzo.github.io/dcgp/docs/python_docs.html

C WEBASSEMBLY BINDINGS Mike Heddes

dcgp.js handles encoding the arguments, decoding the result and provides more readable errors when

incorrect arguments are provided. The users of dcgp.js now only have to think about ways to use the

higher level API instead of needing to think of how to encode and decode the data for every call to dCGP.

This essentially makes the entry level to dCGP in JavaScript lower. In addition dcgp.js can both be used

on the server and on the web which broadens the scope of developers and projects which can use dCGP.

C.3 Memory management

Instantiating a WebAssembly file in JavaScript results in a memory object which is a JavaScript Array-

Buffer. This memory object is the shared memory between the WebAssembly and JavaScript environment

which both environments can read from and write to. The memory can be represented in any supported

number type as a TypedArray, these include:

• Int8Array for a signed 8 bit integer representation.

• Uint8Array for an unsigned 8 bit integer representation.

• Int16Array for a signed 16 bit integer representation.

• Uint16Array for an unsigned 16 bit integer representation.

• Int32Array for a signed 32 bit integer representation.

• Uint32Array for an unsigned 32 bit integer representation.

• Float32Array for a 32 bit floating point representation.

• Float64Array for a 64 bit floating point representation.

In C++ the types have different names but there is a well defined mapping between the C++ and

JavaScript types. For instance, the C++ double type corresponds to the Float64 JavaScript type and

the C++ unsigned int type corresponds to the Uint32 JavaScript type.

Both JavaScript and WebAssembly can access and manipulate the WebAssembly memory directly. This

allows JavaScript to put the numbers representation of any data directly in the shared memory. The

pointer to the memory location of the data together with some metadata of the encoded data are enough

to decode the higher level data structure in C++. Emscripten provides a set of helper functions to

reduce the overhead of allocating and restoring the shared memory. These functions are stackSave,

stackAlloc and stackRestore which implements a stack-based memory management system.

A concrete example of how to encode a number matrix in pseudo-code is given in algorithm 2.

Algorithm 2: Encode a number matrix in JavaScript and place it in the shared memory.

input: Matrix X of size w × l
// Get the linear values representation.

1 flat ← flatten(X);

// Transform the numbers into a specific typed array.

2 typed ← TypedArray(flat);

// Allocate the required number of bytes to store typed.

3 pointer ← stackAlloc(sizeof typed);

// Place typed in shared memory at the allocated location.

4 Set typed in memory at pointer;

The blog post by Marco Selvatici about WebAssembly33 explains encoding, decoding and WebAssembly in

general in greater detail with more examples and diagrams. In addition the blog posts by Lin Clark34 who

works at Mozilla (an initiator of WebAssembly) form a great resource to get a thorough understanding

about how WebAssembly works.

33Marco Selvatici WebAssembly blog post: https://marcoselvatici.github.io/WASM tutorial/index.html.
34Lin Clark blog: https://hacks.mozilla.org/author/lclarkmozilla-com/.

28

https://marcoselvatici.github.io/WASM_tutorial/index.html
https://hacks.mozilla.org/author/lclarkmozilla-com/

D WEB WORKER SYSTEM Mike Heddes

D Web Worker system

This appendix describes the Web Worker implementation. In JavaScript a Web Worker can be used to

create a new thread in addition to the main thread. This thread can then be used to offload some of the

work from the main thread to keep the UI, which must be computed on the main thread, responsive.

Initially all the interactions with dCGP were done on the main thread which resulted in a slow and

sometimes freezing UI which led to a poor user experience. This was due to the evolution cycle which

implements the start, pause, resume and reset functionality, as seen in algorithm 3. The evolution cycle

was blocking UI updates from executing.

Algorithm 3: Evolution cycle.

Input: Event streams: start, pause, resume and reset.

1 On start event handleStart();

2 Function handleStart is

3 while evolving do

4 step();

5 yieldProgress();

6 handleNewEvents();

7 end

8 end

To improve user experience all the interactions with dCGP were placed in a separate thread. This however

generated a different problem, due to the JavaScript Web Worker implementation35 it is only possible

to communicate between threads using the postMessage method to send messages and the onmessage

event to read and handle incoming messages. With this implementation requests to the worker are not

linked to responses from the worker which caused time inconsistencies as described in appendix E.2 and

made for overly complicated code to handle the various response messages.

D.1 Proxy

These problems have been resolved by creating a proxy for the worker on the main thread that acts as

a switch. The proxy adds a unique id property to every request which the worker reads and attaches to

the response so the proxy knows the incoming message was the response for the request with the same

id. For request-response type messages, which are the most common type, the proxy returns a Promise36

that upon receiving the response to the request resolves with the by the worker returned value. For

the evolution start method the proxy instead returns an Observable37 because a single start request can

result in multiple progress responses and a Promise can only be resolved once were as an Observable can

emit multiple responses.

D.2 Observables

The dCGP thread needs to be responsive to updates from the main thread when updates for algorithm

settings are provided. This for example happens when the user changes the algorithm type during

evolution. It is difficult to develop a stable implementation using commonly used event handler functions

because of the asynchronous nature of the incoming messages which resulted in difficult and hard to

maintain code with time inconsistency bugs.

After using a proxy the remaining bugs were resolved by switching to Observable based logic in the dCGP

thread. According to the Observable proposal “The Observable type can be used to model push-based

35JavaScript Web Worker documentation: https://developer.mozilla.org/en-US/docs/Web/API/Web Workers API
36JavaScript Promise documentation: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global

Objects/Promise
37JavaScript Observable proposal: https://github.com/tc39/proposal-observable

29

https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://github.com/tc39/proposal-observable

D WEB WORKER SYSTEM Mike Heddes

data sources such as DOM events, timer intervals, and sockets.” Because communication between threads

is event based Observables are a natural way of handling incoming messages and because of their stream

and pipe philosophy they are simpler to reason about.

D.3 Consistent framerate

The initial implementation of the evolution cycle used a hard-coded value for the amount of steps to evolve

per evolution cycle. This resulted in an inconsistent framerate across devices and between different

network sizes. In general this meant that with larger networks the UI would feel slower because the

updates came in at the same step interval but not at the same time interval. This was improved by

implementing an adaptive step size that would maintain a consistent time interval between UI updates.

30

E BUGS Mike Heddes

E Bugs

This appendix covers two of the bugs that were discovered during the development phase of the dCGP

service. The first bug was found in the protected division operator implementation and the second bug

was due to time inconsistencies in the evolution loop.

E.1 Protected division

Dr. Izzo reported an issue where the displayed equation did not match the plotted graph on the service.

After some time debugging the code for the service it became apparent that the issue would only occur

when the protected division operator38 was used in the generated equation. This raised the suspicion

that there might be a bug in the implementation of the protected division operator or its print function39.

The suspicion was correct, there was indeed a bug in the protected division operator and in its print

function. Even though it was outside the scope of this project some time was spent to fix the protected

division operator which led to a discussion with Dr. Izzo whether the protected division operator makes

sense when used in a differential equation. There was mutually decided that the protected division should

not be used when doing differential equations because the gradient that it creates does not represent what

actually happens which can cause even harder bugs to occur. This decision led to the removal of the

protected division from the service and restricted the protected division to only being used in a CGP

type unweighted expression in the C++ dCGP implementation.

E.2 Evolution loop

As covered in appendix D the evolution cycle starts on the start event and loops until a pause or reset

event. An issue with the evolution cycle was first discovered by Mr. Ozturk who reported an issue where

the loss plot of the service would draw a loop-like shape. After some research it became apparent that

the loop-like shape was caused by a new evolution progress event that happened after the evolution had

already been paused or reset. Some more research showed that the new progress event was the result of

a loose coupling between the dCGP thread and the main thread which caused these evolution progress

events from not being discarded.

In order to resolve this issue a centralized communication point needed to be created for communication

between the main and dCGP threads to remove the loose coupling that caused this bug. This point is

called a proxy because it sits between the invoker (main thread) and the handler (dCGP thread) and all

the requests and responses go through it. The proxy together with the use of Observables removed the

time inconsistency by correctly discarding progress events after the evolution has been paused or reset.

The implementation of the proxy and the use of Observables is covered in more detail in sections D.1

and D.2.

38The original dCGP implementation in C++ includes a protected version of the division operator. This protected version

sets the result to 1 when dividing by 0 which would otherwise result in infinite numbers. Infinite numbers sometimes are

preferably avoided because it can cause trouble in the calculations of evolution algorithms.
39In dCGP every operator has a associated print function which is called when the string representation of the operator

is needed, for instance when the equation needs to be displayed.

31

F SOFTWARE DEVELOPMENT PLATFORM INTEREST Mike Heddes

F Software development platform interest

Figure F.1 shows the software development platform interest over time. Comparing the search interests

for GitHub, GitLab and Bitbucket.
01

.0
7.

20
18

31
.0

7.
20

18

30
.0

8.
20

18

29
.0

9.
20

18

29
.1

0.
20

18

28
.1

1.
20

18

28
.1

2.
20

18

27
.0

1.
20

19

26
.0

2.
20

19

28
.0

3.
20

19

27
.0

4.
20

19

27
.0

5
.2

0
1
9

0

20

40

60

80

100

Date

In
te

re
st

Software development platform interest over time

GitHub
GitLab

Bitbucket

Figure F.1: Software development platform interest according to Google trends (2019). Numbers repre-

sent search interest relative to the highest point on the chart for the given time. A value of 100 is the

peak popularity for the term. A value of 50 means that the term is half as popular.

32

G UNIT TESTS Mike Heddes

G Unit tests

This appendix will cover the use of unit tests, what they are and how they work. Unit tests are typically

automated tests written and run by software developers to ensure that a section of an application (known

as the “unit”) meets its design and behaves as intended (Hamill, 2004). The goal of unit testing is to

isolate each part of the application and show that the individual parts are correct. A unit test provides

a strict, written contract that the code must satisfy. If the actual behavior in a unit test deviates from

the expected behavior the test will fail. Because unit tests are written in a programming language they

can be integrated in any script. For instance, unit tests can be run as an automated step in a continues

integration setup.

Listing 1 shows a basic example of a unit test taken from the dcgp.js source code. The test checks

whether all the entries of the result of the flatten2D function match all the entries of the predefined

expectedArray. It also checks whether the order of the entries is correct. The matrix variable defines

a condition on which the flatten2D function, the unit of code, is being tested.

1 it(’flattens a 2D array’, () => {
2 const matrix = [[1, 2, 3], [4, 5, 6]]
3

4 const flat = flatten2D(matrix)
5 const expectedArray = [1, 2, 3, 4, 5, 6]
6

7 flat.forEach((value, index) => {
8 expect(value).toBe(expectedArray[index])
9 })

10 })

Listing 1: Unit test for a flatten array function.

The dcgp.js project has unit tests for all aspects of its code base. For example, it has unit tests for the

mu plus lambda algorithm to check whether the expression after a number of evolution steps is improving

and tests for the gradient descent algorithm to check whether the constants are being updated correctly.

There is also a test that prevents regression from occurring by checking whether the loss after a number

of gradient descent steps stayed the same over any number of runs of the unit test. This test makes sure

that a change in a different function in the code base did not change the result of the gradient descent

algorithm. There are also unit tests for a number of helper functions which range from encoding and

decoding strings to flattening arrays as seen in listing 1.

33

H SERVICE VALIDATION Mike Heddes

H Service validation

This appendix shows three cases that were used to manually validate that the service is working correctly.

In the first validation the cardinal sine function sin(x)÷x was fitted using the mu plus lambda algorithm

without the sine or cosine kernels which resulted in an approximation of the function as seen in figure

H.1. In the second validation the cardinal sine function was fitted using the mu plus lambda algorithm

with the sine and cosine kernels both active. This setup found the exact solution as seen in figure H.2.

In the third validation the cardinal sine function was fitted without the sine kernel and with an extra

provided constant. First the mu plus lambda algorithm was evolving the expression followed by gradient

descent which matched the target equation by setting the constant to half π as seen in figure H.3 which

is equivalent to the offset of cosine and sine. These validations show the correct behavior for each setup.

Figure H.1: dCGP service validation without the cosine and sine kernels.

34

H SERVICE VALIDATION Mike Heddes

Figure H.2: dCGP service validation with the cosine and sine kernels.

35

H SERVICE VALIDATION Mike Heddes

Figure H.3: dCGP service validation without the sine kernel and with a constant.

36

I INTERVIEWS Mike Heddes

I Interviews

This appendix will cover three interviews that were conducted during this project. First Dr. Märtens was

interviewed to get an understanding of dCGP and the goals for the dCGP service. The second interview

with Dr. Märtens was regarding the implementation details of the service. The third interview was with

Mr. Ozturk to get his feedback on the service.

I.1 Introduction to dCGP as a service

This section describes an interview with Dr. Märtens, a research fellow in the Advanced Concepts Team

of the European Space Agency. This interview was conducted in the first week of the internship and

was conducted to develop a feeling for the desired end result and to get up to speed with the dCGP

implementation. In this interview Dr. Märtens was asked to explain how dCGP works, why dCGP was

created and where to find resources to read up on dCGP. Lastly, he was asked why there is a need for

the dCGP service. The details regarding how dCGP works can be found in appendix A, why dCGP was

created is answered in the first paragraph of chapter 1. The resources Dr. Märtens provided are described

in section 2.2. The need for a dCGP service is covered in sections 2.1, 3.3 and 2.4. This interview resulted

in a good understanding of dCGP and developed a feeling for the desired end result.

I.2 dCGP service, users and functionality

This section describes the second interview with Dr. Märtens. This interview focused on the implemen-

tation details of the service. This interview was conducted one months into the internship. During this

interview the features that the dCGP service should have were discussed together with the possible ways

of developing the service and the technologies that could be used to build it. How Dr. Märtens envisioned

the dCGP service is covered in sections 3.3 and 3.4. The technologies that can be used to develop the

service are covered in chapter 3. This interview resulted in an overview of technologies which were further

researched and were extended by new possibilities that where discovered during the research phase.

I.3 dCGP web service feedback

This section describes an interview with Mr. Ozturk, a young graduate trainee in the Advanced Concepts

Team of the European Space Agency. This interview was conducted two and a half months into the

internship and was meant to get feedback on the implementation of the service at the time. Mr. Ozturk

mentioned that the order of the settings panels did not reflect the order that he would use them in, as

discussed in appendix B, this behavior was afterwards verified by Dr. Märtens. In addition he discovered

several bugs including the one covered in appendix E.2 and proposed several feature requests like being

able to add negative constants and being able to evolve an initial expression that results in infinite

numbers.

37

	Preface
	Summary
	Samenvatting
	Terminology
	Introduction
	Problem analysis
	Problems
	Orientation resources
	Research questions
	Relevance
	Stakeholders
	Scope
	Client feature requests

	Solution analysis
	Starting point
	Differentiable Cartesian Genetic Programming
	Target audience
	Controls and functionality
	Application development options
	Serving a web application
	dCGP on the server
	dCGP on the client
	Markup generation
	Application inputs and outputs
	Requirements

	Technology selection
	Application approach
	Frontend framework

	Detailing
	Tools
	Iterative design
	Cases
	GitHub repositories
	Tests and validation
	Documentation

	Realizing
	Distribution
	Marketing
	Maintenance

	Conclusion
	Recommendations
	References
	Appendices
	Differential Cartesian Genetic Programming
	What dCGP does
	How dCGP works
	What dCGP can be used for

	UI design
	WebAssembly bindings
	Dependency compilation
	Provided API
	Memory management

	Web Worker system
	Proxy
	Observables
	Consistent framerate

	Bugs
	Protected division
	Evolution loop

	Software development platform interest
	Unit tests
	Service validation
	Interviews
	Introduction to dCGP as a service
	dCGP service, users and functionality
	dCGP web service feedback

